

Modern Applications of Deep Learning

Michael Pound

Kernel Convolution

- Convolve a kernel across an image or feature map
- At each location, calculate the sum product of the kernel and the input

1	4	3	2	2
2	1	7	4	6
3	4	6	1	8
2	1	5	3	7
1	7	3	5	2

-1	3	-3
2	5	3
-5	-9	-3

Why are these filters useful?

 The Sobel operator consists of two 3x3 kernels that highlight image edges

1	0	-1
2	0	-2
1	0	-1

1	2	1
0	0	0
-1	-2	-1

Padding and Stride

Padding: 1 Stride: 1

Padding: 0 Stride: 1

Padding: 0 Stride:2

Max Pooling Layers

- Max pooling spatially downsamples feature maps
 - Reduced memory requirements
 - Increased spatial invariance of features

1	4	3	3
2	7	1	4
3	6	5	1
2	1	4	3

Width: 2 | Height: 2 | Stride 2

7	4
6	5

Convolutional Neural Networks

- The majority of deep learning uses Convolutional Neural Networks
 - Usually combine convolution and pooling operations
 - Finish with traditional MLP layers to perform a classification

Convolutional Layers vs MLPs

 Are convolutions and MLPs that different?

Modern Classification Networks

A Classic Example

LeNet was the first convolutional network, used for digit classification

VGG (2014)

 When it was released, VGG was the deepest network so far

- Replaced 7x7 and 11x11 convolutions with chained 3x3
- Padding used to preserve size when using convolutions
- #features increased after each spatial downsampling

	ConvNet Configuration					
A	A-LRN	B	C	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
2, 020			24 RGB image		1, 02.0	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
COIIV3-04	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
	LKN			COHV3-04	COHV3-04	
2.122	2 120		pool	2.120	2.120	
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
	maxpool					
	FC-4096					
	FC-4096					
	FC-1000					
soft-max						

VGG (2014)

- + Outperformed many existing networks
- + 3x3 convolutions are accurate but efficient
- + Consistent design makes it easy to follow
- Extremely hard to train
- Usually must be used pretrained

Transfer Learning

- Training a network like VGG-19 from scratch takes a long time
- It's common to use pre-trained weights to initialise the network
- Training fine-tunes the network from this start point

```
def vgg19(pretrained=False, **kwargs):
       """VGG 19-layer model (configuration "E")
35
36
       Args:
37
            pretrained (bool): If True, returns a model pre-trained on ImageNet
       11 11 11
38
       if pretrained:
39
40
            kwargs['init_weights'] = False
       model = VGG(make_layers(cfg['E']), **kwargs)
41
       if pretrained:
42
43
           model.load_state_dict(model_zoo.load_url(model_urls['vgg19']))
   return model
```


1x1 Convolutions

- These might seem entirely pointless, but they have some interesting uses
 - Ignore spatial connections
 - Combine information across feature maps
 - Can increase or decrease feature depth

Google's Inception (v1)

• Google argued that multiple paths saves us from choosing kernel size

and other parameters

GoogleNet (2015)

- Uses inception modules throughout
- Currently on v7 (I think)

GoogleNet (2015)

- +Ranked #1 for performance
- +Use of 1x1 convolutions makes it actually quite space efficient
- +Trains much faster than VGG
- Pretty convoluted design!

A recent inception block

Network Degradation

Deeper is better, right?

Network Degradation

Deeper is better, right?

Residual Blocks

 Residual blocks deal with the general challenge of training very deep networks

Bottleneck Blocks

 As with inception, briefly reducing the features is more efficient

ResNets (2015)

ResNets chain blocks into extremely deep networks

Batch Normalisation

- BN normalises activations (channels in the feature map) to a learned mean and variance
- Speeds up training by reducing noise in the input to each layer

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

The University of

Computer Vision Laboratory

ResNet Block Code

This Pytorch implementation uses a bottleneck as well as batch normalisation

• I've simplified it slightly by assuming:

```
inplanes == planes
```

```
1 class Bottleneck(nn.Module):
       expansion = 4
       def __init__(self, inplanes, planes, stride=1):
           super(Bottleneck, self).__init__()
           self.conv1 = nn.Conv2d(inplanes, planes, kernel size=1, bias=False)
           self.bn1 = nn.BatchNorm2d(planes)
           self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                                   padding=1, bias=False)
           self.bn2 = nn.BatchNorm2d(planes)
10
           self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel size=1, bias=False)
11
           self.bn3 = nn.BatchNorm2d(planes *
                                               self.expansion)
12
13
           self.relu = nn.ReLU(inplace=True)
14
15
       def forward(self, x):
           residual = x
16
17
           out = self.conv1(x)
18
           out = self.bn1(out)
19
           out = self.relu(out)
20
21
22
           out = self.conv2(out)
23
           out = self.bn2(out)
           out = self.relu(out)
24
25
           out = self.conv3(out)
26
27
           out = self.bn3(out)
28
29
           out += residual
           out = self.relu(out)
30
32 return out
```


Object Detection

Object Detection

- Image-level classification doesn't address the issue of multiple objects
- Object detection aims to find bounding boxes of any interesting objects in a scene

R-CNN (2013)

 A very common approach is to obtain candidate bounding boxes for objects, then classify the bounding boxes using a CNN

R-CNN: Regions with CNN features

R-CNN workflow

Fast^{ER}-CNN (2015)

 Improves upon its predecessor by sharing the convolutions between ROIS

YOLO (2015-2016)

 YOLO predicts bounding boxes and classes for each cell in a grid

 $S \times S$ grid on input

Class probability map

Final detections

Image Segmentation

Fully-Connected Networks

 FCNs contain no fully-connected layers, instead they use 1x1 convolutions to predict 2D locations of objects

Encoder-Decoders

 Encoder-decoders are the commonly established name for this kind of network

Skip Connections

 Dropping down to low spatial resolution can harm the ability of these networks to recover detail

Mask-RCNN

• FasterRCNN + Semantic Segmentation

Heatmap Regression

 We can alter the loss function from BCE to MSE and move from pixelwise classification (segmentation) to a regression problem

Stacked Hourglass

Wheat Feature Localisation

Generative Adversarial Networks

(In two slides..)

Generative Adversarial Networks

Two networks trained to beat one another!

Uses of GANS

Recurrent Networks

RNNs

- RNNs are neural networks that run on temporal sequences
- The activations of the hidden layer are passed back in at the next time step

Inside an RNN

• There's really nothing much!

Problems with RNNs

 RNNs don't handle long-term dependencies well due to vanishing gradients

Long Short Term Memory Networks

 LSTMs are a more complex structure, ideally suited to longer sequences

Convolutional LSTMs

- LSTMs can be made 2D using convolution operations
- This example counts and segments leaves one at a time

